

Phantom

System Wide Information Management

Prototyping Activities

An Architecture for Common Messaging

Paul Comitz - Boeing Phantom Works Josh Hung - FAA

SWIM Prototype Overview

Boeing Technology | Phantom Works

- Context: GCNSS Program Overview
- SWIM Prototype Vision and Strategy
- SWIM Prototype Architectural Evolution
- Messaging and Data Architecture
- Security
- Summary

GCNSS Program Overview

Boeing Technology | Phantom Works

Technology Development

- Director of Technology Development Wilson Felder
- Data and Communication Systems John Loynes

FAA GCNSS Program Manager: John Loynes

ATO-P Data and Communication Systems

GCNSS I

- PoP July 2002 August 2004
- Boeing Team/FAA ATO-P

GCNSS II

- SWIM
 - PoP Sep 2004 Aug 2005
- NEO Security Demonstration
 - PoP Dec 04 Oct 05

GCNSS II Partners

Boeing Technology | Phantom Works

GCNSS Phase II

Center for Advanced Aviation System Development

Boeing Technology | Phantom Works

GCNSS Phase II

- Focus on System Wide Information Management (SWIM)
- Systems Engineering IPT
 - Architecture Development
 - Requirements Development
 - Concept of Use
 - Transition Planning
 - Security Plan
 - Investment Analysis
- Demonstrations IPT
 - Testbed Development
 - SWIM Prototype Development
 - SWIM Demonstrations

Today's Briefing

GCNSS Demonstration Evolution

Boeing Technology | Phantom Works

GCNSS Phase II

Segment A

Jan/Feb '03

- Security
- Broadband Satcom
- Real-time video
- PDA comms

Segment B

Nov '03

Gulf of Mexico

- Satcom simulated ATC
- Voice
- Datalink
- Surveillance

Segment C

Feb '04

- SDN
- Multi-Sensor Tracker
- 3-nm enroute spacing
- TIS-B

CASP Demo

CASP

SWIM Testbed

- SDN
- Common Air Surveillance Picture

SWIM Prototype

SWIM

- SDN
- AIM
- Weather
- Flight Planning

Proof of Concept Demos and Testbed

Prototype

FUTURE: Headed Toward Implementation

What is SWIM?

Boeing Technology | Phantom Works

GCNSS Phase II

SWIM is a scalable, standards-based information sharing architecture that seamlessly and securely connects NAS users with the information they need.

SWIM accomplishes this by providing policies, standards, infrastructure and tools that enable NAS-wide information sharing.

SWIM provides the NAS capability for securely accessing the right information in the right format at the right time at the right location.

SWIM Prototype Vision – Interoperability

Boeing Technology | Phantom Works

GCNSS Phase II

Vision Statement:

- Provide an example of a system that organizes information by routing messages between network interfaces
 - Messages provide access to data, logic and infrastructure

Design Pillars

- General purpose messaging language
- Platform-independent message encoding
- Service lookup and discoverability
- Interfaces described by standards-compliant contracts
- Data architecture based on existing work where possible
 - e.g. FDR/AICM/NSDI

All applications shall integrate

Boeing Technology | Phantom Works

GCNSS Phase II

- Demonstrate the use of data distribution and access techniques in as many FAA and government systems as possible
 - FAA UDDI Enterprise Taxonomy (I-1)
 - FDR/AIXM METARS Service using NIXL (II-4)
 - SWIM Surveillance Service distribution to NAS HOST/DSR (II-5/6)
 - Virtual Radar Service to NAS Host (III-2)
 - WARP Distribution Service (IV- 3)
 - NAIMES Distribution Service (IV-4)
 - EAS/SWIM Test bed Track Mediation
 - ASDE-X

Provide value NOW by working with existing programs

SWIM Distributed Testbed

Boeing Technology | Phantom Works

GCNSS Phase II

- •Lockheed Martin, Rockville, Md. ATM Lab
- •Boeing PW, Herndon Va. SWIM Laboratory
- •ERAU, Daytona Beach, Fl. Air Traffic Displays
- •Teledyne Brown, Huntsville, Al. (vpn) AAFAS
- •Jeppesen, Denver, Co. AIM
- •Boeing PW, Kent, Wa. SWIM Laboratory
- Harris WARP
- Sensis, Syracuse, NY MST, SPM
- •Raytheon STARS *
- ray in een an

*Raytheon and CSC currently being added as p/o NEO Security Demo

•CSC - React *

SWIM Prototype

Boeing Technology | Phantom Works

- Strategy
 - Small Frequent Builds
 - Wide and thin
 - 4 spirals plus reserve
 - Build I in lab Jan 31
 - Build II In lab Feb 28
 - Build III in lab April 14
 - Build IV in lab May 15
 - Build V in Lab June 30 (reserve and demo support)
- Test periods follow builds
 - Record test results in Bugzilla

SWIM Prototype Initial Build Plan

Boeing Technology | Phantom Works

GCNSS Phase II

Functional ID	Capability
	Jan 2005
I-1	UDDI Registry
I-2	Populate UDDI with CIWS/RAPT Contour
I-3	Populate UDDI
I-4	Manually populate UDDI with Surveillance Republishing
I-5	Dynamic Discovery of CIWS/RAPT Contour Service
I-6	Initial Integration of Contours
	Feb 2005
II-2	Surveillance Republishing Web Service
II-4	METAR/NexRad Web Service
II-5/6	Host/DSR information migration I
II-8	Flight Objects I

Provide an infrastructure for service discovery

Populate testbed with initial services

Initial information migration

Prototype Status and Build Plan

Boeing Technology | Phantom Works

GCNSS Phase II

Functional ID	Capability
	Mar 14 - April 14 2005
II-3	CIWS Echo Tops
III-2	Host/DSR Virtual Radar Service
III-3	Flight Objects II
III-5	MSFS Maintenance
III-7	Surveillance Performance Monitor
	April 15 – May 15 2005
IV-1	Flight Data to Host
IV-2	NIXL AIM Web Service
IV-3	WARP Products Web Service
IV-5	Jeppesen TFR Web Service
IV-6	FO Republish Web Service
IV-7	AAFAS Web Service
IV-8	Identity Management
IV-9	XML Schema Registry
IV-10	Surveillance Performance Monitor Web Service

Additional Surveillance and Flight services

Continue Service deployment

Transition to demo support

SWIM Prototype and Test Bed Near Term Benefits

Boeing Technology | Phantom Works

- Representative SWIM Environment
 - Demonstrative Surveillance, Wx, and AIM services
 - Possible to evolve to additional services, agency integrations, and environments
- Benefits
 - Engineering Experiments and Evaluations
 - Rapid prototyping environment
 - Evaluations of anticipated products and services
 - Inter-agency Integration platform

Initial View Prototype Architecture Conceptual Simplicity Promotes Interoperability

Boeing Technology | Phantom Works

GCNSS Phase II

CORBA

Legacy Apps Adapter .Net App Server

Service Bus

J2EE App Server Swim
Enabled
Apps

Shared Services

- General purpose messaging language NIXL
- Platform-independent message encoding XML Schemas and CORBA Objects
 - Use COTS Application Servers
 - J2EE and .Net
 - CORBA
- Service Lookup and Discoverability UDDI, XML Registries
- Standards Compliant Contracts WSDL

Prototype Architectural Evolution Build II Snapshot

Boeing Technology | Phantom Works

GCNSS Phase II

Typical Applications

SWIM Enabled App SPM NAS Host HITL Flight Sim Adapter

Cert

CASP Adapter CORBA Surv CIWS FO

J2EE Surv, Wx

Brokers and Services

.Net FO Republish

Service Bus

Network Mon DC SSL Kerberos KDC

Auth

LDAP Directory XML Metadata Registry

UDDI Registry **Dev Services**

- Defect Tracking
- Source Control
- Collaboration

Security Services

Registry and Directory Services

Infrastructure Management

Applications

Brokers

SWIM Shared Services

SWIM Broker Services

Boeing Technology | Phantom Works

GCNSS Phase II

Initial Arch View (from SWIMAD)

- 1. Discover Service in Registry
- 2. Service Contract defines exposed functionality
- 3. Invoke exposed function Serialize and pass parameters
- 4. Web Service receive via http-post, http-get, http-soap
- 5. Process and return results (if any)

SWIM Protyotype

- Web Services
 - Enormous industry momentum
 - Simpler, reduced infrastructure
 - Cross platform
 - Zero install clients

CORBA

- More infrastructure
- More powerful and flexible
- Also cross platform
- Segment C: 1100 tracks distributed using commodity platforms

SWIM Common Messaging and Data Architecture

Boeing Technology | Phantom Works

GCNSS Phase II

- Prototype Design Pillars
 - General purpose messaging language
 - Platform-independent message encoding
- Based on NIXL: NAS XML Language
 - Application-to-application and System-to-system communication depends on Common Messaging standard (NAS XML language)
 - Josh Hung FAA ATO-P System Engineering
- Guidelines
 - Address overlap and duplication
 - Application and environment neutral
 - Expandable
 - Leverage existing data models
 - Compose messages from smaller elements
 - Lego pieces
 - Use Features and Data Types subschema
 - Candidate Namespaces
 - weather, surveillance, aim, nims, flight

Use SWIM Prototype as Test bed for Common Messaging

NIXL Data Architecture Schema Dictionary 4/2005

Boeing Technology | Phantom Works

GCNSS Phase II

Schema	Description
LMATM_CSA_primitives.xsd	Position, time, speed, identifications
LMATM_CSA_flight_plan.xsd	Flight plan, modifier, filed route
FlightMessage.xsd	Conversion of CORBA IDL
METAR-Message.xsd	METAR for KIAD, KJFK etc.
Weather-Types.xsd	Wx type for METARS message
SDN.xsd	SDN V2 message and data types
SDN-DataTypes.xsd	SDN V2 data types
SDN-Feature.XSD	Track, Track Drop, Beacon Plot,
SML.xsd	SML message using SML features
SML-DataTypes.xsd	time, mode codes, positions
SML-Features.xsd	Sensor types, track types, plot types
AAFAS.xsd	AAFAS alert message
AAFAS-Features.xsd	Flight Info, Flight params, Location, Resources
AAFAS-DataTypes.xsd	Alerts, positions,
SPM Radar Assets.xsd	Health Status of NAS Surveillance Assets
Cat62p9ed12v0.1.xsd	Asterix Category 62 Part 9 version 1.2

NIXL Data Architecture Tiered Schema Files

Boeing Technology | Phantom Works

GCNSS Phase II

- Each of the N systems in the NAS, left to it's own devices, would propose it's own 'preferred' schema, tailored to it's own needs and capabilities.
- To avoid such a 'schema explosion' NIXL schemas should be built using a tiered data model
 - The lowest-level schemas containing the most primitive, most widely applicable data types.
 - The next containing domain-specific data types.
 - The next containing interest-specific data types.
 - The top most containing service-specific data types.
- When proposing new NIXL elements, the designer must
 - First, make every attempt to use existing elements and data types
 - If no existing element/data type meets the need, propose a new one, designed to the tiered model

NIXL Data Architecture Tiered Schema Files

Boeing Technology | Phantom Works

GCNSS Phase II

Repositories and Registries

NIXL Data Architecture

Lemma: Avoid Conversions

Boeing Technology | Phantom Works

GCNSS Phase II

- Scientific data are typically conveyed using
 - magnitude
 - units of measure.
- Interoperating systems may use different units of measure
 - Meters per second
 - Kilometers per hour
 - Cubits per fortnight, etc....
- Data supplied by system A must be converted by system B to B's units of choice
 - May lead to spectacular system failures:
 - Mars Climate Orbiter *
 - Ariane 5
- Can lead to N² cost as each of N systems must implement and test conversion routines for the N-1 different units of measure it receives.
- To avoid conversion errors and to reduce cost, NIXL primitive data types should have a single, implicit, domain-common (or otherwise), unit of measure.
 - Altitude values, traditionally measured as "Feet Above MSL", should be based on a primitive type named "FeetMSL" for example
 - Range values should be based on a primitive type named "NauticalMiles"
 - Velocity values should be based on a primitive type named "Knots"
 - etc...

The 'root cause' of the loss of the spacecraft was the failed translation of English units into metric units in a segment of ground-based, navigation-related mission software, as NASA has previously announced

NIXL Data Architecture MetaData Schemas

Boeing Technology | Phantom Works

GCNSS Phase II

Potential Approaches

- Message by Message
 - METAR-Meta.xsd
 - Field by field definition of METAR-Message etc.
- All domain
 - i.e. Weather-Meta.xsd
 - Definitions of all data elements in classification scheme

Prototype Security

Boeing Technology | Phantom Works

- Messaging
 - Authenticity
 - Confirm the senders identity
 - Attach security credentials to message
 - Passwords
 - Security tokens
 - Digital certificates X.509
 - Integrity
 - Ensure that a message has not been altered
 - Confidentiality
 - Keep the contents confidential
 - Encryption

Summary

Boeing Technology | Phantom Works

SWIM Prototype features:

- Multiple technologies and computing environments
- Multiple Services
- Distributed Test Bed
- Live Enroute, Terminal, and ADS
- Live Weather
- Live AIM

Common Messaging

- A grammar for aeronautical applications
- Evolving
- Requires a patient, but steady approach